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Evaporation from a cylindrical surface into vacuum 
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(Received 17 December 1975) 

When evaporation takes place in a surrounding vacuum, the expanding flow 
from a cylindrical surface is expected to start subsonic and to become supersonic 
in a short distance. A detailed treatment of this transition is given based on 
moment equations derived from the BGK model equation using an ellipsoidal 
approximant to the distribution function. Asymptotic solutions are developed 
for large source Reynolds numbers and compared with previous treatments. 
For moderate source Reynolds numbers a numerical procedure is used. In  the 
latter case the treatment predicts that the flow never approaches a state of 
translational equilibrium. 

1. Introduction 
This study is motivated by interest in evaporation from a line source of finite 

width into vacuum. The distinction between evaporation and effusion is basically 
that in the former case the Mach number at the source is not controlled by gas- 
phase phenomena (i.e. sound waves) and is generally expected to be subsonic. 
Evaporation from a source of finite width generally exhibits two-dimensional 
effects in the gas phase, as the flow contracts to become supersonic, and, if the 
source is a liquid, owing to surface distortion caused by momentum recoil from 
the evaporating vapour. There can also be unsteady effects. Here we shall treat 
only steady one-dimensional evaporation from the surface of an infinitely long 
circular cylinder of constant diameter. Only a monatomic gas is considered, and 
surface recession is overlooked. The gas is assumed to expand to zero back- 
pressure far from the surface. Evaporation rates considered, defined later in terms 
of a non-dimensional source Reynolds number, range from moderate to large. 

Previous treatmants of expansion of a source flow into vacuum by Edwards & 
Cheng (1966) and Hamel & Willis (1966) are based on using hypersonic approxi- 
mations to the moment equations. They predict that translational equilibrium 
breaks down as the flow becomes increasingly rarefied. Such breakdown is 
observed experimentally. (Cf. Anderson & Fenn 1965.) Hamel & Willis (1966) 
relate this far-field solution to the supersonic near field by asymptotically match- 
ing it to an equilibrium (isentropic) flow in some transition regime. 

When we consider moderate evaporation rates this sort of approach needs to 
be re-evaluated for two reasons. 

(i) Deviation from isentropic supersonic flow begins at  a Mach number which 
decreases with the evaporation rate. Thus non-equilibrium behaviour can occur 



470 C .  J .  Knight 

a t  moderate, not hypersonic, flow speeds, and moment equations based on the 
hypersonic approximation can be inappropriate. 

(ii) The vapour flow is expected to start subsonic a t  the surface, but it is 
intuitively reasonable that it should become supersonic. Acceleration of the 
subsonic flow can occur only with entropy production, and hence the flow near 
the surface is generally not near translational equilibrium. 

Taken together these imply that the flow may never approach a state of transla- 
tional equilibrium for sufficiently low evaporation rates. Also, a more detailed 
examination of the Knudsen layer between the surface and the sonic station can 
be relevant. 

Edwards & Collins (1969) analysed transition from subsonic to supersonic 
flow around a spherical drop evaporating into vacuum on the basis of the Navier- 
Stokes equations. Their analysis is limited to large source Reynolds numbers and 
shows that viscous effects do provide a viable mechanism for such transition. 
The usual question of validity of the Navier-Stokes equations in strong trans- 
lational equilibrium arises. 

A Mott-Smith treatment of the Knudsen layer was used by Anisimov (1968). 
The analysis presented later in this paper indicates that Anisimov’s results are 
limited to large source Reynolds number. There is general agreement between the 
predictions of Edwards & Collins (1969) and Anisimov (1968). 

An independent approach will be taken here which is based on the BGK model 
equation. Instead of using matched asymptotic expansions, an approximant to 
the distribution function is introduced which appears to have enough structure 
to give a good estimate in all flow regimes. Specifically, 

where p is the gas density, R = k/m is the gas constant, u is the mean radial 
velocity, and c, q , c  and T,, To, T,  are the velocities and temperatures in the radial, 
polar and axial directions, respectively. 

This ellipsoidal form is consistent with the moment equations of Edwards & 
Cheng (1966) and Hamel & Willis (1966), and it obviously reduces to the Max- 
wellian form if the three temperatures are equal. That use of (1.1) entails error 
was predicted by Hamel, Willis & Lin (1972) and recently supported by Cattolica, 
Robben & Talbot (1974). Nonetheless, here it will be used. 

The ellipsoidal form has been used by Holway (1964) in studying shock struc- 
ture. He found that his results reduced to the Navier-Stokes prediction for weak 
shock waves and were similar to the Mott-Smith prediction for strong shocks. 

2. Five-moment BGK model equations 
There are five quantities in the ellipsoidal approximant to be determined by 

appropriate moment equations: p, u, T,, T,, and T,. Here these moment equations 
will be derived from the BGK model, which in cylindrical symmetry is 
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where 

1 F = p ( 2 ~ R T ) - 3 e x p  

47 1 

(2.2) 

is the equilibrium distribution function and the mean temperature 

T = +(T,+Te+T,). 

Definitions of the various parameters are given after (1.1). 

following equations: 
Taking moments of (2.1) with respect to 1, <, t2, t3, gr2 and Eg2 leads to the 

( 2 . 3 ~ )  
d 
-&(pur) = 0, 

u d u  l d  Te-T, --+--(pT,) = - 
R d r  p d r  r ’  

d T  2 u d u  1’ 2% 3 2 + - -  = - (T - T,) +- 
dr R d r  u r ’  

(2.3b) 

( 2 . 3 ~ )  

(2.3d) 

(2.3e) 

For the special case of Maxwellian molecules preciseIy the same moments result 
from the Boltzmann equation provided the collision frequency v = p R T / p ( T ) ,  
where p is the first coefficient of viscosity. This form for the collision frequency 
is taken to apply generally, and a power-law viscosity is assumed: ,u = ,u,(T/T,)’-I 
with 0 Q ,b’ Q 4. 

A n  interesting consequence of these moment equations can be derived. 
Adding ( 2 . 3 ~ - e )  gives d(3T ,  + To + T, + u2R-l)/dr = 0, or, recalling that 

T = Q(T,+Te+T) I )  

#RT + RT, + $u2 = constant. 

Thus in this treatment a generalized form of stagnation enthalpy is preserved 
throughout the gaa flow, independently of the collision-frequency model used. 
Note, in particular, that the flow work contribution is RT, as would be expected 
since there is directed movement only in the radial direction. 

Entropy is generally not preserved in the gas flow. A general expression for 
the entropy per unit mass is given by Vincenti & Kruger (1967) as 

where f is the distribution function as used here, m is the mass of an atom and 
h is Planck’s constant. Substitution of the ellipsoidal approximant (1.1) gives 
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From the moment equations (2.3) it  follows that 

One circumstance in which entropy is preserved is when all temperatures are equal. 
For later use it will be worthwhile solving (2 .3 )  for all first derivatives. The 

results will be stated in terms of the non-dimensional variables y = In (r/rs), 
p" = pip,, iT = u/(3RT,)*,  c = T,/T,, !& = To/%, = TIT,, where 
rs is the cylinder radius and ps and T, are surface values, to be defined later. 
Conservation of mass is simply 

= %IT, and 

PiT eY = m/psr,(3RT,)4, a constant, (2 .8 )  
and the remaining moment equations become 

( 2 . 9 a )  

(MT-I) ,  (2 .9b )  II 
( 2 . 9 ~ )  

( 2 . 9 d )  

where MT = ,ii2/!& p = Q(c+pO+ c) and a = m/3ps.  Recognize that M, is not 
the usual Mach number based on the equilibrium speed of sound, a, = ($RT)t. 
It is based on ar = (3RT,)*, which might be thought of as a frozen speed of sound. 
The parameter a can be interpreted as a source Reynolds number or an inverse 
source Knudsen number. 

In  discussing the moment equations hereafter we shall deal only with the 
non-dimensional variables. Hopefully, it will cause no confusion if the tildes are 
dropped for notational simplicity. 

As a check on the validity of the model, suppose MT 9 1 as in previous analyses. 
Equation ( 2 . 9 ~ )  shows that u-'du/dy = U(M,*), or u - u,, the terminal speed, 
and 

(2 .10)  

It follows directly that T, - T, and T8 N 3 T -  2% in the hypersonic far field, 
as expected in a cylindrical expansion. It is then possible t o  eliminate T, by 
differentiation and find that the mean temperature satisfies 

T N 0 as M f + m  (2 .11)  
d2T aTfi d T  2aTfi 
-4- dy2 ( 2+- & ) d y f ( ~ ~ )  
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This is the equation derived by Edwards & Cheng (1966), and an analytic solution 
can easily be constructed for Maxwellian molecules ( p  = 0). The treatment here 
reduces to the expected form in the hypersonic limit. 

3. Asymptotic solution for large source Reynolds number 
An asymptotic solution to the moment equations for large a can be developed 

using singular perturbation techniques. It will be convenient to replace y by u 
as the independent variable. Thus we consider 

9 (3 . la )  
dlP, _ -  ( T , - ~ U ' ) ~ T ~ U - ' ( T - ~ ) + ~ T , T ~  
du  

dT0 _ -  ~ ( T , - u ~ ) [ c L T ~ u - ~ ( T - T ~ ) - ~ T , ]  
du  u [ccTPu-~(T - T,) - T,] ' 

- 
u [aThp2( T - T,) - T g ]  

( 3 . l b )  

T + gTr + u2 = 4u2,, a constant, ( 3 . 1 ~ )  

(3.1d) 

The third relation is simply the stagnation-enthalpy integral (2.4) rewritten in 
terms of non-dimensional variables. The convenience in writing the constant of 
integration as above will be obvious shortly. 

- 

= 3T - (T, + TO). 

First-order supersonic near-$eld solution 

On the basis of continuum theory we expect the four temperatures to be equal to 
first order in the supersonic near field. With this assumption the stagnation- 
enthalpy integral gives 

T, = To = T, = T = 3(4u:-u2). (3.2) 

Perturbation terms O(a-l) are now easily computed from (3.1), and they show 
that this solution breaks down as u+u*. We could anticipate this from the 
fact that u = u* and all temperatures equal to tu: corresponds to an equilibrium 
Mach number of one. So long as the temperatures are equal the flow is isentropic, 
according to (2.7), and a subsonic flow can only decelerate as it expands in the 
cylindrical geometry. Thus, since the flow generally starts subsonic and it must 
accelerate, a solution of the form (3.2) cannot be continued into the subsonic 
region u < u* near the cylinder surface. 

The perturbation expansion also breaks down as u -+ 2u,, the terminal speed, 
unless p = 0. In this far-field regime the analysis leading to (2.1 1) is appropriate. 
Details of construction and matching are closely related to the discussion by 
Hamel & Willis (1966), so the arguments will not be repeated. 

There is a tendency to identify the reference temperature T, used in non- 
dimensionalization as the stagnation temperature of the gas stream. Then we 
should have ui = for a monatomic gas. In  the treatment here, T, is taken to 
be the temperature of the vaporizing material. Since these two temperatures are 
generally not the same, as will be seen later, we retain u* as an undetermined 
constant. 
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First-order Knudsen-layer solution 

The temperatures cannot be constrained to be nearly equal in the non-equilibrium 
subsonic regime. Equations valid in this Knudsen layer result by simply setting 
a = 03 in (3.1), giving 

We can be a bit cavalier about solving (3.3) and matching with (3.2). Requiring 
all temperatures to be equal to #ui at u = u* and assuming To = T, at any point 
u < u*, which eliminates the homogeneous solution for To, leads to 

A physical argument indicating we should expect T, = T, at the surface is as 
follows. Suppose that the vaporizing material at the cylinder surface, be it 
liquid or solid, is in Maxwellian equilibrium, implying a single, well-defined 
surface temperature. A particle undergoing a phase change interacts with the 
surface work function, but that is expected to reduce only the energy flux 
normal to the surface. The lateral temperatures should be unaffected by the 
phase change, and hence they should remain unchanged and equal. 

Intermediate transonic solution 

A plot of the solutions (3.2) and (3.4) is given in figure 1. Note that there is 
nothing exceptional happening near u/u* = ($)&, where Mf = 1; in effect, the 
frozen Mach number drops out of the problem at large source Reynolds number. 
Both function values and slopes match at  the sonic point. Curvature mismatch 
implies that an intermediate expansion must be constructed for higher-order 
matching. We shall be interested in higher-order terms for comparison with the 
results of Edwards & Collins (1969) in 8 4. 

To construct the transonic expansion note that the first-order results in both 
the supersonic near field and the Knudsen layer reduce to 

T,,To,T,,T N $ ~ $ - ~ ( u ~ - u $ ) + O ( u ~ - u Z , ) ~  as u+u*. 

Thus appropriate expansions should be of the form 

where v = a6(u2 - u:) and 6 is to be chosen. 
Take 4u2, as the exuct constant in the stagnation-enthalpy integral, which is 

to be expanded later as a function of a. Then the integral gives T' = -$Ti. 
Equation (3.1) for T, becomes 

dTi/dv = - S [ ~ V / U $  +$~",$u:)'-fl/Ti] (3.6) 
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FIGURE 1. First-order flow properties for large source Reynolds numbers, 

normalized with respect to values at the sonic point. 

provided 6 = 3.  Expansion of (3.2) and (3.4) gives the matching conditions as 
Tj N - 3u2/5u2, as v+ -co and Tj+O as u+ +co. 

The transformation Tj = - Q(u/u*)2 +Ax changes (3.6) into a Riccati equation 
for v. Thus set v = BF-l dF/dx and choose the constants as 

A = (gu; )+ [&&&;u;)l-B]P, B = - @; )% [ M U 2  2 6  * 5  p U 2  * ) ~ - B ] S  (3-7)  

to arrive at  the Airy equation d2F/dx2 = xF. 
With A positive we shall evidently have to have x --f CQ as u + co. Recall that 

the Airy function Bi (x) is exponentially large compared with Ai (x) as x+co and 
that Bi has the same sign as its derivative for x > 0. Therefore, with B negative, 
P must be equal to Ai (2) within a numerical factor which is irrelevant. Asymp- 
totic expansions for Ai (x) and its derivative lead to 

I x N ( v / B ) ~  - B / ~ v  

As it happens, B2 = gu2, A and the boundary condition required by matching 
as v -+ 00 is satisfied. 
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Ai ( x )  and its derivative are always of opposite sign in the range 0 < x < co. 
To get the branch v < 0 we must consider x < 0 and x lying in the range up to the 
first zero of Ai ( x )  a t  xo = - 2.338. In  the vicinity of x,, 

Ai (x) N ( x  - xo) Ai (xo) + O(x - xo)2 
and so 

The constant Axo is necessary and requires a term O(a-8) in the Knudsen-layer 
expansion for matching to follow. We shall return to constructing the appro- 
priate term shortly. 

As an interesting aside, there is a similarity between the preceding construc- 
tion and that of Edwards & Collins (1969). This is somewhat surprising since 
their starting point, the Navier-Stokes equations, seems quite different. 

Substitution of the transonic expansions into equations (3.1) for leads to 
Ti = - $Ti. There will be no problem in matching with the supersonic near fieId 
since the perturbations there have this relationship as u-+u*. Matching with 
the Knudsen layer can be accomplished if there is a term in the Knudsen-layer 
expansion for To approaching - $Axoa-f as the sonic point is approached. 

Second-order terms in the Knudsen layer 

Add to (3.4) perturbation terms of a-8 times Ti, Ti,  Ti and T',  respectively. The 
stagnation-enthalpy integral gives T' = -$Ti and (3.1) for T, leads to 

dTi/du = Ti/u. 

The solution matching the transonic result is Ti = Axouu/u,. The equation 
for Ti  is 

A particular solution is evidently Ti = - $Ti and the homogeneous solution is 
easily constructed. However, the latter is eliminated if we require To = T, at any 
point u < u*, which will be done. It follows that the complete expansions to this 
order in the Knudsen layer are 

dTildu = - $Ti/u - ~(Qu,  - U )  (Ti + +Ti)/(?& - u * ) ~ .  

(3.10) I T, = Z+U* u - 3u2 + a-fAxou/u*, 

To = T, = 6 ~ :  - ?U* u + 3u2 - $@-*Axo u/u*, 

T = 4 ~ 2 ,  - '2 U* u + u2 - $dAx,u /u , .  

The next term in the Knudsen-layer expansion is a term of order a-llna. We 
shall not concern ourselves with this further development here. 

4. An ad hoc surface evaporation model 
Surface boundary conditions 

To complete the description we need a set of boundary conditions at  the cylinder 
surface. In  deriving these we revert to dimensional variables. The approach 
taken here follows Anisimov (1968) in assuming that phase equilibrium exists 
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U* = 0.59 u0 = 0.34 T,, = 0.63 
p = 0.56 

E = 1.12 Tt = 0.85 4 = 0.84 
To, = T,o = 1 To = 0.88 

TABLE 1 

just inside the surface. Then we can assume that the distribution function for 
emitted particles has the form 

f = ps(2nRT,)-4exp [ - “2;zg‘2] for 5 > 0, (4.1 a) 

where ps is the saturated vapour density at  the surface temperature T,. A non- 
zero distribution function is needed for 5 < 0 to  account for backscattering. 
There is no choice obviously better than assuming that it is proportional to the 
ellipsoidal approximant for negative 5. Thus 

f = ep(2nR)-~(~T,T,)-*exp “ ] for 6 < 0. (4.1b) 

The parameter e can be thought of as a sticking coefficient times the ratio of 
density of backscattered particles to gas density (p)  at the surface. 

Boundary conditions for the five parameters in the ellipsoidal approximant 
follow by requiring appropriate moments of (1 .1)  to match those of (4.1) a t  the 
surface (y = 0). The BGK model (2.1) implies that these moments should be 
taken with respect to $, t2, t3, <q2 and “c2. After considerable manipulation this 
leads to the following results stated in terms of the non-dimensional variables 
p“ = p/ps, 6 = u/(3RT,)*, = TIT,, To = TOIT, and $ = T,/T,: 

= q = 1, q = 1--(~7r)+6, (4.2a, b)  

p” = {[I - 7r*m exp (m2) erfc (m)] + Pt[(2m2+ 1) exp (m2) erfc (m) - 2mn-~1)/2~, 
(4.2~) 

E = [(2m2 + 1) - m(7r/Pr)J1 emz/@!, (4.2d) 

with m = G/(+pr)*.  All values in (4.2) are to be evaluated at  the surface. Below 
the tildes will be dropped with the understanding that all variables are non- 
dimensional. 

Comparison with previous work 

As a check on the surface boundary conditions to be used here, consider the 
case of large source Reynolds number for comparison with other results in the 
literature. The first-order results given in table 1 were obtained by combining 
(3.4) with (4.2) and solving numerically. The parameter is the gas stagnation 
temperature divided by the surface temperature, and qi is the evaporation rate 
normalized with respect to the value without backscattering. That is, 

(4.3) 12 2 Tt = -E-U*, 6 = mlpsrs(RTs/2n)*, 

wit,h m computed from (2.8) for y = 0. 
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p = o  
4 - 0.0162 

0.194 & -0-211 
T; - 0.0703 
P' - 0.187 
B' 0.302 

0.193 
- 0.0462 T; 

4' 

j3 = 0.25 

- 0.0175 
0.210 

- 0.228 
- 0.0758 
- 0.202 

0.325 
- 0.0499 

0.208 

TABLE 2 

p = 0.50 

- 0.0189 
0.226 

- 0.245 
- 0.0818 
- 0.217 

0.351 

0.225 
- 0.0538 

Edwards & Collins (1969) give ? = 0.90 and $ = 0.81 and Anisimov (1968) 
gives = 0.89 and q5 = 0-82. Although these treatments assume spherical and 
slab symmetry, respectively, a comparison is valid because geometric effects are 
O(a-1) for large a. Note the stagnation-temperature jump at the surface. Pre- 
sumably, part of the heat required for change of phase is being supplied by the 
expanding vapour. The significantly lower value of ? reported here may be due 
to the altered form of the stagnation-enthalpy integral (2.4). Both the other 
treatments assume that a single temperature characterizes the gas flow. 

Second-order results are proportional to a d  and can be obtained by com- 
bining (3.10) with (4.2) and determining the rate of change of all variables with 
respect to a-% by numerical differentiation. Setting u* = ?& fa-*&, etc., the 
perturbation coefficients are as given in table 2 for three representative values ofj3. 
The value of $' implied by Edwards & Collins (1969) is 1-14. They assume 
constant viscosity, or p = 0.  No explanation of the disagreement is available. 

5. Numerical solution for moderate source Reynolds number 
Pormulation as a boundary-value problem 

For moderate source Reynolds numbers it is necessary to solve (2.9) 
numerically. Since y does not appear explicitly, it is convenient to introduce u2 
as the independent variable to reduce the order of the differential system. Thus 
we shall be considering 

dT,  a= 2u2[aT@(T - T,) - u2TO] ' 

dTO 3(T,-u2) [aTP(T-TO)-2u2TO] 
&5= 2u2[aTB( T - T,) - u2TO] ? 

dT,  

aTB(T, - 3u2) (T - T,) + 2u2T,T0 

3aTb(T, - u2) (T - z) -- 
du2 - 2u2 [aTfl(T - T,) - u2TO]' 

( 5 . 1 ~ )  

( 5 . l b )  

( 5 . 1 ~ )  

The relationship between u2 and y is left until later. 
Let us turn now to boundary conditions to be imposed in solving the first-order 

system (5.1). The cylinder surface is the most obvious boundary point. Boundary 
conditions there are given in (4.2). A consequence of the choice of independent 
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variable is that the ‘location’ of this boundary point is not known apriori. That 
is, the value of u2 at the surface must be determined as part of the solution 
procedure. This entails no great difficulty. 

In  general the differential system is poorly behaved near M, = 1, as can be 
seen most clearly by returning to the equation for u2 in (2.9). The only way to 
achieve monotonically increasing velocity (as y increases) is to have the following 
conditions holding simultaneously at this critical point: 

T, = u’, aTa(T - T,) = u2Te. (5.2) 

The first requirement is simply M, = I and the second is a compatibility con- 
dition which causes +he right-hand sides of (5.1) to be indeterminate forms. The 
critical state can be characterized as a saddle point. Again the value of u2 a t  this 
second boundary point, and hence its ‘location’, is not known apriori. 

Imposing (5.2) can be thought of as a physical requirement which guarantees 
that the solutions obtained will be meaningful. The situation is analogous to 
one-dimensional isentropic continuum flow, where steady sonic flow can be 
maintained only at  a section of minimum area. Further discussion of critical 
points in ordinary one-dimensional flows is given by Shapiro (1953). 

There are now five boundary conditions, which should be adequate to deter- 
mine three conatants of integration and the values of u2 a t  the two boundary 
points. Formulation as a two-point boundary-value problem is perfectly proper. 
However, it seems preferable t o  continue integration to  a third point well into the 
region M, > 1. A numerical scheme for three-point boundary-value problems 
will be used here, with integration continuing to u2 = 1. The choice of ‘one’ as 
the third boundary point is essentially arbitrary, and no boundary conditions 
are to be imposed a t  it. Beyond u2 = I the system (2.9) can be integrated 
straightforwardly. 

The numerical procedure 

A quasi-linearization procedure will be used to solve the three-point boundary- 
value problem. It can be described as follows. Consider a first-order ordinary 
differential system of the form 

d5wx = P ( X ,  $), (5.3) 

where 4 is a vector having N, components. In general there can be Nu nonlinear 
algebraic conditions on q4 at x = xu, N, conditions at x = x, and Nb conditions at  
x = xb. It is most convenient to assume that these conditions involve values of 4 
only at the boundary point in question. The locations of xu and xc are to be 
determined, so for a closed system we require 

Nu+Nc+Nb = Nv+2. (5.4) 

To facilitate imposing boundary conditions the nodal system (xi} should 
always contain the boundary points as nodes. To this end, set 



480 C. J .  Knight 

with 1 < M < N .  Note that the nodal locations will change as the values of 
x, and xc are iteratively determined. 

On this nodal system (5.3) is approximated by a central finite-difference 
scheme : 

9j+1= 9j + (xj+l-~j) ik”(i(xj+l +xj), 9(9j+l+ 9j)). (5.6) 

This gives ( N  - 1) N, nonlinear algebraic equations. These together with the 
boundary conditions give a system of NN, + 2 equations in the same number 
of variables. In a quasi-linearization procedure the system is solved by Newton- 
Raphson iteration. Full advantage is taken of the special structure of the 
Jacobian matrix, whose elements can be evaluated by numerical differentiation. 

Typically, about 160 equations are involved and convergence is rapid with 
a good initial guess. Generating an initial guess was found to be critical. This 
was done by starting at a = 1000, where the asymptotic forms of Q 3 can be used, 
and sequentially reducing a until the range of interest was covered. The previous 
solution was used as an initial guess for each new value of a. About 20 steps were 
required for the results reported. 

Numerical results 

Solutions for Maxwellian molecules (/3 = 0) and several source Reynolds numbers 
are given in figure 2. In  figure 2 (a) note that the surface and critical values of u2 
are converging as a decreases. For a < 10 the numerically determined surface 
values of illf are reasonably well fitted by 

M, z 0-494 + 0*437/a, < 10. (5.7) 

This, together with (4.2), allows the locus of surface conditions to be approxi- 
mately extended as shown by the curved dashed line. 

Similar results for hard-sphere molecules (p = 4) are given in figure 3. The 
effect of B in the Knudsen layer and the supersonic near field is not large. 

Parameter values at the surface (y = 0) for these two cases are given in 
tables 3 and 4. The value of 9, the mass-flux parameter defined in (4.3), is 
expected to approach one in the free molecular limit. As a decreases, the flow 
becomes increasingly rarefied and we see that 9 is indeed increasing, presumably 
towards one. Smaller values of a were not attempted owing to difficulty in 
achieving convergence of the Newton-Raphson iteration. 

Flow properties for Maxwellian molecules and a = 10 are plotted versus the 
co-ordinate y = In (r/r,) in figures 4 and 5. These results were obtained by 
integrating (5.1) to u2 = 1 and determining associated y values from 

Beyond u2 = 1, (2.9) are integrated using a fourth-order Runge-Kutta scheme. 
The entropy variable 

(8 - %)/A = 1n cP-l(T,T, %)*I, (5.9) 
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R a m  2. Orthogonal temperature variation with ua for /3 = 0. Curves: 1, a = 1000; 
2. a = 100; 3, u = 10; 4, a = 5 ;  5 ,  tc. = 3; 6,  cc = 2. 

stated in terms of non-dimensional density and temperatures, follows from (2.6) 
with 

(5.10) 

Since dsldy > 0 for all y )  the flow is never in translational equilibrium for 
a = 10. 

Note that entropy increases linearly with y in figure 4 as u approaches its 
terminal value. This is a result which follows only for Maxwellian molecules. 

31 FLM 75 



482 

1.0 

0.8 

0.6 
Te 

0.4 

0.2 

1.0 r 
0.8 

t 

C. J .  Knight 

0.4 

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 

0 

- 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 

0.4 

0.2 

1 
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 

Ua 

FIGURE 3. Orthogonal temperature variation with u2 for ,8 = 0-5. 
Curves: 1, u = 1000; 2, u = 100; 3, u = 10; 4, u = 5;  5, ct = 3. 

a 

1000 
100 
10 

5 
3 
2 

Po UO T,, 4 Tt 

0.558 0.346 0.624 0.840 0.846 
0.550 0.355 0.615 0.848 0.844 
0.513 0.395 0.571 0.881 0.836 
0.488 0.425 0.539 0.899 0.832 
0.462 0.456 0.505 0.914 0-828 
0.436 0.488 0-470 0.925 0.825 

TABLE 3 
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a! Po UO Tm $ Tt 

1000 0.558 0.347 0.624 0.840 0.846 
100 0.549 0-356 0.613 0.849 0.844 
10 0.508 0.401 0.565 0.884 0.835 
5 0.481 0.433 0.530 0.904 0.831 
3 0.453 0.467 0.493 0.918 0-827 

TABLE 4 

2’o m 

o.8F 
0.4 

I I I I I I I I 
0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 

Y 

FIGURE 4. Density, mean velocity and entropy V 8 .  y = In (r/rs) for /3 = 0 and a = 10. 

Y 
FIGURE 5. Orthogonal temperatures 218. y = In (r/r8) for /3 = 0 and a! = 10. 
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FIGURE 6. Orthogonal temperatures 2)s. y = In (r/rb) for = 0.5 and a = 10. 

Equation (2.11) and the analysis preceding it imply that all,,temperatures are 
proportiona1)jo e-AV for /3 = 0, with 

A =  l+&-[(l+&)"&J* (5.11) 

This dependence on y is clearly evident in figure 5. Also, according to (2.8), 
density becomes proportional to e--Y as u approaches its asymptotic value of 2u,. 
Thus 

( s - s ~ ) / B  - constantf(1 -4A)y as y+co for /3 = 0. (5.12) 

The value of A is 0.555 for a = 10, implying slopes in agreement with those 
shown in figures 4 and 5. 

For /3 $. 0 the trend in (5.12) does not hold because the temperatures in the 
far field do not depend exponentially on y. The dependence for hard-sphere 
molecules can be seen in figure 6. The explicit form follows from (2.10): 

3% $3, T #-d [(aP/l%) (y - YO)l-l'p, ( 6 . 1 3 ~ )  

(5.13 b)  

The representation breaks down as /3 approaches zero. 
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6. Concluding remarks 
The approach used here is recognized as ad hoc in using the BGK equation, 

in assuming an ellipsoidal approximant for the distribution function, and in the 
treatment of boundary conditions a t  the surface of the cylindrical source. Its 
main merit is that it provides a generalized treatment of evaporation into a sur- 
rounding vacuum which may be related to previous solutions in appropriate 
limits. Some conclusions which have been drawn follow. 

(a)  A mechanism causing the gas to accelerate and become supersonic can be 
postulated. Interaction of escaping atoms with the surface work function causes 
them to belong to a highly non-Maxwellian distribution after the phase change. 
Collisions in the gas phase relax the distribution function towards a Maxwellian 
form. This implies increasing entropy and consequently the subsonic flow tends 
to choke. In effect, the flow loses the information that it started subsonic. Once 
the flow is choked, stream-tube divergence in a cylindrical geometry continues 
to accelerate the flow to terminal speed. 

( b )  For the model discussed here there is a generalized stagnation-enthalpy 
integral. The associated stagnation temperature is found to be lower than the 
temperature of the liquid (or solid) at  the cylindrical phase interface. A plausible 
explanation for this is that a portion of the latent heat of vaporization required for 
phase change is being supplied by the expanding gas flow. 

( c )  For moderate values of the source Reynolds number a, there is a strong 
dependence of flow properties on a. Numerical results show that, as a decreases, 
the stagnation temperature of the gas stream decreases and the mass flow in- 
creases towards its free molecular value. On the other hand, for large values of a 
the flow becomes independent of a to first order and the results of the model 
agree to this order with previous work. Owing to the results of Cattolica et al. 
(1974) it is doubtful whether the particular model advanced here is valid for small 
values of a. No attempt has been made to assess the limits of validity of the model. 

( d )  The variation of flow properties with /3, which characterizes the depen- 
dence of collision frequency on temperature, is relatively weak in the Knudsen 
layer and supersonic near field. This is true, in particular, for the stagnation 
temperature of the gas stream and the mass flow. In the hypersonic far field the 
behaviour of the three orthogonal temperatures used in the model depends 
strongly on p and is similar to early treatments by Edwards & Cheng (1966) and 
Hamel & Willis (1966). The only new feature is a scale dependence on a intro- 
duced by an altered solution in the supersonic near field. This is particularly 
evident in the curves for To in figures 2 and 3. 

( e )  Numerical solutions at  moderate source Reynolds number (a = 10) show 
that the flow field never achieves a state of translational equilibrium. In the 
Knudsen layer entropy production is intense owing to relaxation of the non- 
Maxwellian surface distribution function. Later the collision frequency, which 
is proportional to a, is too small to maintain equilibrium as the flow state changes 
owing to the expansion process. This observation is in marked contrast to the 
case of large source Reynolds number, where the supersonic near fielcl is in 
translational equilibrium to within terms O(a-l). 
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